WRIGHT STATE RESEARCH INSTITUTE
UNIVERSITY

MI DCA, Ver si on 1. 4

User Manual and Tutori al f or t h
Du&lycl e Architecture

Technical Report Number COLABTR-3

Dustin Dannenhauéy Danielle Brown,Samuel Schmitz, Vahid Eyorokon,
Venkatsampath R. Gogineni, Sravya Kondrakunta, Zohreh A. Dannenhauer
Tim Williams and Michael T. Co%

Wright State University

College of Engineering & Computer Science
Department of Computer Science dfmineering
3640 Col. Glenn Hwy.

Dayton, OH 45435

!Navatek 2Wright State Research Institute

4300 Wilson Blvd Suite 350 4035 Col. Glenn Hwy.
Arlington, VA 22203 Beavercreek, OH 45431

Quick Start

This section describes how to install the core MIDCA system and shows how to run a very
simple example that illustrates the fundameetacutionwithin the architecture.

Installing! MIDCA

1. Obtain a copy of MIDCA by cloning the repository or ddeading the source
directory.(https://github.com/COLAB2/midca)

2. Make sure the name of the top level folder is spelled ex&uitycad (if midcahas
been downloaded as a zip file, you will have to renamedtusét saves the folder
as midcamaster’)

3. Run the command O6python setup.py install 6

T I f you plan to make changes to MIDCA,
instead Any changes you make will bemediately updated when you run
MIDCA.

1 Note that NumPy Http://www.numpy.org/) should be installed
automatically when you run 6épython set
option). If for any reason that fails, yowill need to install the package
yourself. You can check that NumPy is installed by running python and
typing 6i mport numpy®o.

Example:TheRunningof the Chickens

The chicken_run.pyscript runs a simple version of MIDCA in a domain where chickens
cancrossaroad.The stateof the environment (i.e., the worldpnsists of a left and right

side ofther oad. The possi bl e goal predicates are
goala guments are fHcl waovkic oeferatontdio chitkendhe goal

predicates dictate which side of the road the selected arguineenthicken)will try to

reach For example, 1 f @Aonl eftheltheexeoutkgyanfor was s el
this goal would result inthe chickennamedclucky beingon the left side of the roaafter

the goal icompleted

Instructionsfor running the example

1. Open up a command line a terminal.
2. Go tomidca/midcéexamples directory
1 A cmidcdmidcae x amp | es 0O
3. Run chicken_run.py
T Apython chicken_run. pyo
Press?'and entefor help.Or just pessing enter will advance one phase.

! These instructions do not describe the full installation.|&stalling MIDCA on pagel 3instead. For more
details on the examplegs Sectior2.2 pageb.

https://github.com/COLAB2/midca
http://www.numpy.org/
http://www.numpy.org/

1 You will see the following:

Next MIDCA command:

*reekkk Starting Simulate Phase ***x+*

Simulator: no actionselected yet by MIDCA.

Next MIDCA command:
4. Press enter to continue to the netep(in MIDCA, stepsar e cal |l ed fAphases

1 You will see the following

*eekkk Starting Perceive Phase ***x+*

World observed.

Next MIDCA command:

T Typing i s hClueky on the rigipt And hady clucky on the left.
Once athelnterpret phase

1 You will see the following:

*reekkk Starting Interpret Phase ***x+*

Please input a goal if desired. Otherwise, press enter to continue

T Nowenteragoal fonl eft (clucky)o

5. You will see the plan anis remaining execution if yogontinue to pressnter
repeatedly.

6. Toexitthescriptt ype fAgqo .and hit enter
Runtime Commands

The followinginteractivecommands aresefulwhen MIDCA pausesxecuion (see the
sectionRuntime Commandsn page26 for a full list).

1. help(o r Dispags)the possible commands that can be given to MIDCA during
runtime {.e.the commands detailed here).

2. memorydump Allows userto seememoryvariables.The usercan either see all
variables and their values or enter a single variable nampusinsedts value. If
MIDCA has been running a long time, the output may take up more than the screen,
therefore just looking for the variable can save space.

3. printtrace Output a text representation of the entire trace up until the last phase
executed bWIDCA.

4. q Quit MIDCA.

5. skip (&optional x=1) Skips ahead xnumber ofcycles or one full cycle if ¥s not
given.

6. showDisplays thecurrent state of thevorld.

Table of Contents

(@ 11 o3 QS = | TR li
TabIle Of CONENTS......uuiiiiiiiiiiiii i es e v
TabIle Of FIQUIBScoiiiiieieeee e eeer e Vi
O [011 0T [FTox 1 0] o WO OSSPSR 1
1.1. MIDCA, VEISION L.A....ccooiiiiiiiiiiiiitieees ettt eeenss s eeeeeeeaaa s 1.
1.2, HOW 0 Get HEIQ....coieeeeeeeee e ree e e e e e e e e e e e e e aeaeaeees 1
I T © 11 1] P 2
2. IMIDCA OVEIVIBWcceeeiiiiiiiiiiaa e e e e e e e eeeetses s s s e e e e e e e e e e e e e eeanaessaaeeeeaeeeeeeeeesssnssnnnnne s 2
2.1. The Ground Level, Object Level and Mégael................cooovvvviiiiieenne e, 2
2.2. The MIDCA Phase StrUCIULE............cooviiiiiiiimeen e seeiinvieeeneeeneenennennenn 4
The cognitive CYCIa........coo e A
The chiCken_run eXampPle...........ouuuuiiiiiii e errrss e e e e e e eaes 5.
The MetacognitiVe CYCIE..........oovi e 5.

3. PlaNNING. .. 7
3.1. The BlockSWOrld DMaiN..........ccoeeiiiiiiiiiiiiiiieee e et mmme e eeeeeeeannes 8
32. MI DCAOGS Rlanm e S 8.
3.3. Examples of Planning Operators and Methads...............cccccvvcevveeviiiinnnnn. 9
PYNOP Planner.........oooi 9
JSHOP PIANNEL.......ccc oot e e e e e e e aneeaa e as 9
3.4. How to Run an Example in MIDCA 1.4....cccccoiiiiiiiiiiiiiiiieeeiciee e, 10
Blocksworld domain with Pyhop planner............ccoiiiiieenee 10
Blocksworld domain with JISHOP Planner................eeeviiiiieeeiiiiiiiiiiiiiiiieeeeeeenn 11

O |01 =T o] (=1 ¢= L1 o] o S PPPP 12
4.1. D-Track Goal GeneratiQn.............eceieeieeeeceeeieeee e e e e e e e e e e e eeerreea e e e e eeeeeees 12
4.2. K-Track Goal GeneratiQn..............ceeeeieeeeceeeiiiieeee e e e e e e e e eeeanree e e e e eeeeeees 14
5. The Implementation of MIDCA, VErsion L4ccccccoiiiiieieieiiieeeiiiieeeeeeeeeeeeeee 15
5.1. Phases and Modules in MIDCAL...........uuuiiiiiiiiiiiieeeiiiiieieeeeeeee e e e e e e 15
5.2. Adding a New Module............cooooiiiiiiiiiieeeie e 17
5.3. The Goal Graph and EXamples...........coooiiiiiiieeeni e 18
Example with a plan that fails to achieve all goals...............ccoovvicciiiiiennnnns 19
Examples of goal graph drawings..........ccoooeeeiiiiiiiccc e 21

54, G0al OPEIAtIONS......ccoiiiiiiiiiiiiiitirres e eeeeessbb e e e e eeeeeeeeeeeeeean 22
5.5. How to Install and Run Version 1.4 of the MIDCA Architecture............... 23
INSLAllING MIDCA ... e e e e e e aneeas 23
Using MIDCA with simulated worlds using a predicate representation.......... 23
RUNNING MIDCA ... e e ettt e e e e e e et e e e e e eessammmees 24

Understanding how MIDCA works from browsing the source cade.............. 25

6. Defining @ NeW DOMAIN..........ccooiiiiiiiiiiiieeee e e 26
7. Logging and Debugging in MIDCA_L1.4......ccoouuiiiiuiiiiies it 28
4% T o To o [0T O PP P P PP TPURTTPPRR 28
Initiating and disabling @ 10g file...........oo e 28
Location Of [0g filES......ccooiiiieeee e 28
Files in thelog fOIAer:........ooeiee e e e e 28

7.2, DEDUGOING . . e eeeeeeeiieee e 29
Debugging IN MIDCA L. 4......ccoo et 29
Debugging through 10g fileS............uuiiiiiiii e 30

8. AdVANCEA FEAIUIES.uuiiiie e e eeeeie et rene e e e e e e e e e e eeeeeeeannn e 30
8.1. The MIDCA_1.4 APItO ROS........cii it e eer e eenr s 30
8.2. MIDCA for the Baxter Humanoid RODOL...........ccccceeiiiiiicccs 31
Blocksworld domain for the BaXter............ceoiiiiiii e eeeeeeeeeeeeen e 31
@ ST (0] o 01O 32
External steps (Sensors and effeCctors).........cooovviiiiiiiicce e 32
MIDCA setup: all steps from baxter run.pY.....ccceeeeeeeeeeeeeeiiieeeieieee e, 32
What MIDCA does While running...........ccccuuiiiiiiiiieeeiiiiiiieeee e 33
Cam@a CaliDIAtiON.......uuiiiiiiiiiiii it 35

8.3. The Baxter and GazehQ............ooovviiiiiiiiemr e e e 35
REFEIENCES. ... uuiiiiiiiiiiiiiii e snnseees s seneneeeneee s B0
Appendix A: Frequently Asked QUESTHIONS.............uuuuuuuemmiccreeeeeiiinninnaee e e e e e eeeneees 42
MIDCA_1.4 General QUESHIONS.........ovveeieiiiiiiiiiimmeeeeeeeetennnnnas e e e e e e ememrnnnnnneeeeens 42
Questions regarding ROS and the Baxter rabat..................ovveeeiiiiiiiiiiiiiiin, 43
Appendix B: List Of MOAUIES..........ccoooiiiiiiiiiiiieeeee e 44

Table of Figures

Figure 1: The Metacognitive Integrated Di@jcle Architecture (MIDCA).................. 3

Figure 2. An example of task decomposition. Method m2 decomposes tpgimaive
task t12 into t21 and t22. Operators opl and op2 accomplish each of these
primitive subtasks respectively............cccuvviiiiiiiieeeiiie e 7

Figure 3. A blocksworld problem to put block A on B. The first panel shows the initial
state, andhe remaining panels show the incremental execution of the plan steps

that solve the problem.............oor e 8
Figure 4. A task decomposition trégr goal= = =h|| in blocksworld domain.The leaves

Are the OPEIALOIS. ...eeiiiieeeeeie e 8
Figure 5. MIDCA_1.4 output during the cogsci_demo exampl.................ccevvveeenn. 11
Figure 6. Depiction of the Firee used in cycling through the 3 block configuraticiss.
Figure 7. TFTree that generates goals to put OUt fILES.........ccvvviiiiiiiiicesiiiieeeeeeee. 14

Figure 8. Module execution sequences (a) Example execution sequence of a eoghitive
agent (orange, left); (b) Example execution of the modules at the metacognitive

level (blue, FgNL)).......cooei e 16
Figure 9. Example showing intedving of metacognitive modules continuing with
examples from FIQUIE B..........oooeeiiiiiiiicee e 17

Figure 10. Complete sequence of all modules in the oftuey &are executed in a
metacognitiveenabled agent (starting from the top left and continuing down,

ending at the bottom Fight)...........oiiiiii e 17
Figure 11. Goal graph for EXample.d........cccoooeeiiiiiiiiieeeiii e 21
Figure 12. Goal graph for EXample.2...........oooooiiiiiiieeee e 21
Figure 13. Example specification of the MIDCA 1.4 logfile..........ccoovvvviiviieeen.. 28
Figure 14. Code snippef a log file..........oi e 29
Figure 15. Code snippet of memory access.file.........ccccovvvviiieiiiieeeen, 29
Figure 16. Code snippet of the MIDCA_1.4 output file...........ccvveeiiiiiiiieciiiiiiieeee, 29
Figure 17. Inerfaces between MIDCA and the external world and between cognition and

[pgT] e ToT0 T o111 o] A PP PPPPPPPPPPRPPRI 30

Figure 18. Baxter Robot in gazebo, after executing the roslaunch command......37
Figure 19. Baxter Robot along with table and blocks in gazafter executing the second

Set Of COMMANTS.....coiiiiiiiiiieee e 37
Figure 20. Baxter Robot with left arm in tucked position and right arm in a position to view
blocks, after executing the third set of commands.................ccoeveeee. 38

Vi

file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946338
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946338
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946345
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946345
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946345
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946345
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946349
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946349
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946355
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946355
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946356
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946356
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946356
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946357
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946357
file:///C:/Users/michael.cox/Google%20Drive/Research/MIDCA/MIDCA%20documentation/MIDCA%20Doc_9_4.docx%23_Toc12946357

1. Introduction

TheMetacognitive Integrated Dualycle ArchitecturdMIDCA) (Cox et al., 2016; Paisner, Cox,

Maynord & Perlis, 2014)s a cognitive architecture that models both cognition and metacognition

for intelligent agpeenrtcse.ptlitoncoo ncsyicsltess oaft fbaoctthi ot
metacognitive level. In general, a cycle performs prokdeining to achieve itgoals and tries to
comprehend the resulting actions and those of other aggotdem solvingonsists of intention,

planning, and action executiophases whereas comprehensionconsists of perception,
interpretation, and goal evaluation.

The MIDCA systen is meant toserve as a basis fantelligent control of a softwareagentor
physical platformin a complex environment. MIDCA can be applied to several different
environments (i.edomaing and can be used for variodscisiontasks.People interestea iusing
MIDCA are likdy to fall into two categories.

1. People who want to build an agent to carry out tasks iarevironment
2. People who want to build upon MIDCA as they conduct new research on cognitive
architectures and artificial intelligence.

Regardless of category, if thisyigurfirst time using MIDCA beginwith thefiQuick Stard section

1.1.MIDCA , Version 1.4

MIDCA is a computational theory of cognition angetacognition implemented in a software
systemwrittenmainlyin python MIDCA is highly extensible and can be easily tailored for custom
use as will be explained in this manWwéérsion 1.4 of MIDCA(i.e., MIDCA_1.4)is publically
available on the githubode repository andas severatewfeaturegncludingthe following.

JShopautomateglanner.

Goal selection operation.

Goal change operation.

Expectations and explanation module at meta level.
Newdomains.

arwnE

Projectwebsite:www.midca - arch.org
Github epository:https://github.com/COLAB2/midca
Githubwiki: https://github.com/COLAB2/midca/wiki/MIDCA -v1l.4 - Home

1.2.How to GetHelp

Questions and comments witspect to MIDCA 1.4are welcome. Please email your concerns to
wsri - midca - help@wright.edu . Resources and videos are also available from the site of
the Annual MIDCA Workshops. Ségtp://www.midca - arch.org/workshops

http://www.midca-arch.org/
https://github.com/COLAB2/midca
mailto:wsri-midca-help@wright.edu
http://www.midca-arch.org/workshops

1.3.Outline

The remainder of this document is organized as follows., Mestpresent an overview of the
MIDCA architecture.n this section we distinguish metacognition from cognition, atitenwe
discussthe syster@ srganizationin terms ofinformation processinghases The next section
describs the implementation of phases as python modules and detail® adccustommodules.
This isfollowed by a description of the goal gragdta structure along widn exampleThenext
sectiondescribs how to define a new domaiandwe discuss the fundamental notion of goal
operations in MIDCA that distinguishes it from similar cognitive systemss iBhiollowed by a
section that explains logging and debugging within the architectuseibsequensection on
advancedeatures includes details for using MIDCRA4with theRobot Operating System (ROS)
framework. Finally this documentconclude with references andwo appendicesAppendix A
contairs frequently asked questiomsd Appendix B enumerates the full list of the basic system
modules.

2. MIDCA Overview

MI DCAGs f un c tiddepicedin Figurerl.urig illustraionshows the architectuie
two reasoningycles and the constituentsM| D C Ayxlss arerganized into functional phases
at different levels, and the phases are implentgelbyepython modules. This section describes the
former, and the next section deals with the latter.

A reasoningcyclestarts withinput of thedomain (either the worldomainor cognition itselfvia

the Perceivgor Monitor) phase. The Interpret phased¢akheextractedpredicate relations and the
expectations in memoin orderto determine whether the agent is making sufficient proghgss.
this point, if the domainpresents problemsr opportunities for the agenthen a new goal is
created The Evaluate phase incorporates the concepts inferred linterpretand notes whether
existing goals are achieveld acycle, Intend commits to a current goal from those available. The
Plan phase then generates a sequence of actions. T{w Ecintrol)phaseexecutes the plaone
step at a timéo change thelomainthrough the effects of the planned actidmsthe next cycle
MIDCA will then use expectatiorisom a model of these actiofs evaluate the execution of the
plan.The metacognitive cyclen Figurel, upper cycle in blue) is analogous to the cognitive cycle
(lower cycle in orange)

2.1. The Ground Level, ObjectLevel and Meta-level

One way of organi zing MI DGQGrArtermscobthree tevels:i(1) thee s i s
ground level (2) the object leveland (3) the metéevel (Cox & Raja, 2011) Theground level

contains the Perceive phase, Act phase, and the sioridator(or when using MIDCA with ROS

or another API, the world it and focuses omteractons withMl DCAG6 s e n Vhisr on men
level contains the information needed for the agent to acquire observations from the world
(Perceive) and perform changes to the world (Act). Perceive and Act phases may need to be
customized ased on the environment or world the agent is operating within.

Goal Management
goal change goal input

Metacognition

Reasoning Trace
(T1)
Strategies ()

Meta-Levsl Introspective

Control - Episodic Memory rospect
= Metaknowledge
Meta-Level » \Self Model (o))
ggfal change 90| goal input

Object Level

Memory g .
Problem “ Comprehension
Solving 4 Mission &

Goals(G)

World Model ()
Episodic Memory

Semantic Memory|
(%) & Ontology

Plans(my) &
States(s;)

Ground Level

Figure 1: The Metacognitive Integrated Dual-Cycle Architecture (MIDCA)

The object level which is sometimes referred to as the cognitive level, contains phases that use
information directly related to the world. These are-nwtacognitive phases. Tian, Intend,
Evaluate, and Interpr@thases are all part of the object level, since tleyeach concerned with
world-related information. The Plan phase determines what actions need to be executed in the
world to achieve the goal. The Intend phase selects which goals to commit to; these goals are future
world states the agent would like tchaéave.The Evaluatephase assesstége completion of active

goals. The Interpret phase is concerned with detecting anomalies, explaining failures (in the
world), andgenerating new goalgVithin thephase®f the object levelactivity isgenerallyrelated

to the environmentGoals are concrete or abstract world states to be achieved.

Themetalevelis concerned with monitoring and controlling the object level. In the same way the
object level perceives the environment and acts to change it, so does doegniive level
monitor the object level and asta the metdevel control phasgto change the object level. The
structure of the phases at the metalevel mirror the object level, yet theofothes phasess
different. The source of input to the mdgael (through the Monitor phase) is a trace of behavior

of the object levelNote that he metdevel is still in early developmeand so the implementation
is preliminary

2.2.The MIDCA Phase Structure

The fundamentatomputationalnit for reasoning cyclesm MIDCA is aninformation processing
phase.

The ognitivecycle

Perceive: The objective of the Perceive phase is to obtain knowledge of the world. If using a
simulator, this may be to simply query the simulator for a current state emgttire that state in

MI DCAGS memory. Il f not wusing a simulator, ot h
a physical camera to capture phoSedien8.2faranvi deos
example of this). In generall|l observations should happen in the Perceive phase.

Interpret: The Interpret phase directly follows Perceive and is meant to provide a number of
interpretationrelated cpabilities. These capabilities derive useful information from an initial
world statewhich isobtained fronthe Perceivgphase These capabilities are likely to includet

are not limited to: inferring new facts (e.g. by running a reasoner over the initial world state),
noting any anomalies or unexpected conditions in the world state, explaining why the world state
is the way that it is or why an anomaly has occurred, amergting new goals for MIDCA to
pursue. Prior research on géatmulationhas shown that certain states may prompt the agent to
adopt new goaldiaisner, Cox, Maynor@& Perlis, 2014.

Evaluate: Evaluate follows from the Interpret phase and the prirffaanys is to review and update

the agentds current goal schievbta goalthentimpgoal shaudt | vy,
be droppedn the Evaluate phasén general, any kind of behavior involving evaluation of the
agent 6s knowl eidtpiephasb.oul d happen

Intend: The Intend phase determines which goals to pursue and faltevshe Evaluate phase.

New goals are typically generated and thensert e
systendb s i nt er raaits gealsandi plats;seeBection 5.3). During the Intend phase,

MIDCA may commit to Jor more goalsThereare two selection strategies used to select one goal

from all availablegoals The first method is First In First Out (FIFO) and g8exonds a smart

selection criterion to select a goal. For more informatiohe latterseeKondrakunta2017).

Plan: The primary purpose of the Plan phas#ich follows the Intend phasis,to generate the
next actions to be executed by MIDCAhe current goalsand state of the worldstored in

MI DCAOG s areuwmedray inpulhere are multiple planners that are available in MIDCA
including aHierachical Task Network (HTNyythorbased SHOP planner named PyHOP; an
asynchronous version of PyHOP that is more commonly used on robotics platforms (we have used
it on a Baxterobof); a javabased HTN SHOP2 plannéXau, et al., 2003Nau, Mufioz-Avila,
Cao, Lotem& Mitchell, 2001)that is run as an external java program; and a-stsee heuristic
search planner that can be modified to be used as a BFSpb&Splanner.Becauselanning
often requirespecificknowledge (i.e.HTN planners require task and method decompositions
heuristic search planners may require dorsaecific heuristics), there amgecial filesthat
contains planner specific informati¢see Sectio.3).

4

Act: The Act phase carries out the next action by MIDCA, usually the next action of the current
plan.If no planexist, then naactionsareperformed.If an actionis chosen, it is sent to the world
simulator, which uses it to compute the next world state. An example of such an action might be
crossleff) in thechicken domain belowAny behavior where MIDCA executes an action to change
the world happens in this plea&or an example of the Act phase operating on a robot, see Section
8.2

Thechicken_run example

Chicken_run.py is a cognitieonly example in MIDCAwhich demonstrate the basics of MIDCA
1.4. This section will go through the cognitievel phases of MIDCA in the example and explain
each phasesee also the Quick Start on pages ii

Perceive:In the beginning of this example, Perceive does little more than copy the state of the
world (i.e., the chicken and the road) and put it back in memory.

Interpret: This phase interacts with the user. It waits for a goal predicate to be given. For example,
thesser coul d gi ve t he egtablshestheogoal agdndafdCAruastkey) 0. T
singlegoal for the chicken to cross to the left side of the road.

Evaluate: This phase checks to see if tharentgoal isachieved in the statBecause the goal in
the agenda has not yet bemmitted tothis phase does nothing.

Intend: This phas@owselects the most recent géram the agenda and makes it the current,goal
thereby committing to achieve this goal

Plan: This phase creates a plavith actions that will allow a goal to be accomplished. For
example, if the user wants the chicken to cross to the left side of the road, MIDCA might create a
plan withasingleact i on ficrossl efto.

Act: This phase takes an action from the planattehptsto executet.

Simulation: The action is now simulateahd the results of the action changes the state of the
world if the action was valid

Perceive:This phase takdhe new stattom thesimulatorand updates thremory For example,
if the chicken has crossed to the left side of the road it will appear in the world on the left side of
the roadThis perceive marks the beginning of the second cycle through the cognitive level.

Interpret: Nothing occurgduring Interpret fthis point in the exampldf something unexpected
had happened (i.e. the Acrosslefto action had

Evaluate: This phase notices that the state of the world entails the goal state and removes the
Aonl ef t doal frainchle ggendla. The agenda is now empty.

The netacognitivecycle

Metacognitive phases carry the same philosophy as their cogeni@lecounterpds. The primary
differences are between Perceive (cognitive) and Monitor (ogtative, and between Act
(cognitive) and Control (metagnitive. Perceive and Monitor are both concerned with obtaining

the state of théworld.0 However, the worldor the Monitor phase is not the groutelvel world
butinsteadtist h e fof cogritidn Thus Monitor obtains information pertaining to activity

at the cognitive level. Likewise, the cognitive level Act phase is concerned with ababecisange

the ground-level environmentwhile the metalevel Control phase is concerned with modifying
some part of cognition. This could include changing data stored in MIDCAs memory or removing
or adding a module from a particular cognitive phase. Below is a brief sunoim@agh phase of

the metacognitive layer. Please keep in mind that the metacognitive layer is still in early
development and some phases have no implementation other than a simplendiaedred
approach. The are manypportunities for future workt the metacognitive level.

Monitor: The Monitor phase obtains the most recent trace of cognition from memory. The
cognitive trace is constructed by recording what each module in each phase takes as an input and
produces as an output. Specifically, the cognitive trace is composed of ardalidémary that

can be indexed via the phase and cycle (cycle refers to loop iterations). The inputs and outputs are

changes in the data stored in MIDCAG6s memory.
planning during the Plan phase would bewloeld state and current goal of MIDCA (again these

are stored in MIDCAG6s memory) and the output
memory).

Interpret: The Interpret phase is responsible for detecting cogHiwel behavior that may
warrart a metacognitive response. Currently, Interpret has modules for detecting discrepancies,
explaining the cause, and generating an appropriate goal. However, only discrepancy detection is
implementedexplanation and goal generation are simple, fergineeed approaches. Currently

there are two grounkkvel domairindependent expectations that are used in the discrepancy
detection approach found in tMRSimpleDeteatnodule.

Evaluate: Since the current implementation ¢fie metacognitive layeensures thatall
metacognitive goals are achieved in one metacognitive cycle, evaluate does not have an
implementation. Evaluate will be responsible for monitoring progress on metacognitive goals that
take more than a cycle to achielide metacognitive layer runs famly a single loop between

each cognitive modujeeeFigure8, Figurel3, andFigurel0).

Intend: The Intend phase is meant to decide which goal to pursueuftent implementation is
straightforward, and any goals that are pending will be selected.

Plan: The Plan phase decides what actions to take in order to achieve a metacognitive goal (which

is different than a cognitive goal, sincengtacognitiveggoalisc oncer ned wi t h a fu
stated in cognition; goal s at the metacognitdi
the Control phasecan only execute three actions RemoveModule, AddModuleand
TransformGoal. The RemoveModuland AddModuleactions are responsible for removing and

adding cognitive level modulegespectively The TransformGoalaction is responsible for
performing a transformation on the goal. The code to @autythese actions are found in the

Control Phase.

Control: The Control phase contains the information for carrying out the actions described in Plan.
Currently, the Control phase carries out an entire plan as opposed to a single action like the Act
(cognitive) phase.

We now turn our attentiontoamore detaded s cussi on of the component
phasesMost important are the planning and interpretation components. We examine them in turn.

3. Planning

In the literature, planning is a means for calculating a sequence of steps that achieve a goal or
perform a task, given the current configuration of the world. Steps are represented as actions that
if executed will change the world; whereas, the configuration of the world is represented as a state
consisting of the relationships between objetiat aretrue at some point in time. These
relationships are often represented as a set of logical predicates along with their arguments. For
example,”Y 1 ¢f is a state where the predicat@olds between the objeaisanda State

space planners seakdchieve a goal state given an initial state; wherieaarchical task network

(HTN) planners seek to refine an abstract task into a set of subtasks given an initial state. Both
produce as output an ordered sequence of actions we call a plan. Given that MIDCA mainly uses
HTN planners, we will assume this for the subsequent discussion.

We denote araction| g OaQmMi Qoé FHOQQQ W othat accomplishes a primitive
task 0 in statei if & ®A/Q oand is applicableto i. A method is a tupleq
Eha®@m oolas’ln I Qo & Qo 0o i Qn which ¢ @& & is the name of the
method;0 & i a°Qis a nonprimitive task; and) 1 'Q & & ¢ iKa set of literals called the method's
preconditionsD i 'Q & & & sPecifies what conditions the current state must satisfy in ordér for

to be applied, and 6 @ O ¢éi ¥Pecifies one or more subtasks to perform in order to accomplish
0 MiaQ

—
—
r

I: 1 [:2

Figure 2. An example of task decomposition. Method m2 decomposes the non-primitive task t12 into t21 and t22.
Operators opl and op2 accomplish each of these primitive subtasks respectively.

An HTN planning problem is a tuple i YiO . It takes the initial staté, which is a symbolic
representation of the state of world, and a set of taéks, 0 833D s to beaccomplished. It

also takes a knowledge ba&®,including operators and methods. A plafi | 8 s isa
solution (i.e., a task decomposition ad-igure2) for a planning problem to accomplist This
means that there is a way to decompd$ent o °~ i n such a weaydupoh a't

execution will transform the start state into the goal state.

7

C

-

3.1. The Blocksworld Domain

Consider an example theblocksworld domain with a goél £6h5 . This goal is mapped to the

root taskmoveblocksin Pyhop planner. Assume the initial state in panel (&jigire 3 with the

three blocksA, B, and C on the table. Given that both blocks are clear, the planner generates a
simple twostep plart 1 "Q0 @ohn 6 o). Panels (b) and (c) shave execution of the

plan stepsFigure4 shows the task decomposition tfeethis task.

- - -
AlBfc BJc B|cC
(a) (b)

(c)
Figure 3. A blocksworld problem to put block A on B. The first panel shows the initial state, and the remaining panels
show the incremental execution of the plan steps that solve the problem.

move-blocks

/\

(move_one, A, B) move-blocks
(get, A) (put, A, B) []
(pickup,A) (stack, A, B)

Figure 4. A task decomposition tree for goal o = =ﬁ|| in blocksworld domain.The leaves are the operators.

3.2MI DCA6s Pl anner s

SHOP(Nau, et al., 2003 an HTN planning algorithm that generates plans for tasks rather than
goals. A procedure in MIDCA maps the ¢oto tasks for the SHOP Planner. SHOP creates plans
by recursively decomposing tasks into smaller subtasks until only the primitive tasks are left which
can be accomplished directly. SHOP uses methods and opefatmiethod specifies a way to
decompose non-primitive task into a set of subtaskhile anoperator specifies a way to perform

a primitive task

MIDCA _1.4uses two different implementatisof the SHOP planner:
1- Pyhop planner
2- JSHOPplanner

Pyhop is a SHOHke planner written in Python; where@§HOP is the Java implemtation of
the SHOP planner. For both planners,nged to define a domain file and a problem file for the

8

JSHOP planneiThe domain file contains the definition of operators, methodsxnda. In the
problem file, initial state and initial task list (goals) are specified.

3.3. Examples of Planning Operators and Methods

Pyhop planner

For each domain, there is an operator class and method class. For exaenplgerators and
methods for blocksworld domain arermdcamidcadomaingblocksworldplar.

The code below is an example of an operator in Pyhlois is an operator tpickupa block from

the table. The preconditions of this operator are (1) the position of the block is on the table, (2) the
block is clear, and (3) the agent is not holding anythifige results of this operator are (1) the
blok is in the hand, (2) the block is not clear, and (3) the agent is holdibépck.

return state
else : return False

1. def pickup(state,b):

2. if state.pos[b] == 'table’ and state.clear[b] == True and state.holding == False:
3. state.pos|[b] = 'hand’

4. state.clear[b] = False

5. state.holding =b

6.

7.

The code below is an example of a method in Pyhop. This method decomposes the high level task
move_one to a set of subtasks to get a blaskand put it at destination. There are two different

ways to decompose this task. If the position of the biodk in arm then this task is decomposed

to, f OdAQ'Qisa otherwise it is decomposed to the set of subkasks
Qo hn Q' Qisa

pyhop.declare_methods('move_one' ,movel)

def movel(state,bl,dest):
if state.pos[bl] =="in -arm":
return [('put’ , bl,dest)]
else :

return [('get’ , bl), ('put’ , bl,dest)]

Noo,rwdhRE

JSHOP planner

The domain and state files for the blocksworld domain &reated at the URL
midcdmidcaddomaingishop domain®locks world

The code below is an example of an operator in JSHOP plamherfirst line is the name of the
operator. The second line specifies the pnedns that need to be met for that operator to be
applied, and the last line is the results of performing that operator.

1. (:operator (!pickup ?a)
2. ((clear ?a) (on-table ?a))
3. ((holding ?a)))

https://github.com/COLAB2/midca
https://github.com/COLAB2/midca/tree/master/midca
https://github.com/COLAB2/midca/tree/master/midca/domains
https://github.com/COLAB2/midca/tree/master/midca/domains/blocksworld
https://github.com/COLAB2/midca/tree/master/midca/domains/blocksworld/plan
https://github.com/COLAB2/midca
https://github.com/COLAB2/midca/tree/master/midca
https://github.com/COLAB2/midca/tree/master/midca/domains
https://github.com/COLAB2/midca/tree/master/midca/domains/jshop_domains
https://github.com/COLAB2/midca/tree/master/midca/domains/jshop_domains/blocks_world

The code below is an example of a method in JSHOP planner. The first line is the name of the
method, the second line (which is empty here) is preconditions for this method, and the last line is
a set of subtasks.

1. (:method (achieve -goals ?goals) ()
2. ((assert -goals ?goals nil) (move-block nil)))

3.4.How to Run an Example in MIDCA 1.4

Blocksworld domain with Pyhop planner

You can run an example script namamtysci_demo.pfrom midcamidcaexamplesfolder (see
Figureb), oryou can write your own script.

(1) The domain file and state files need to be defined for the MIOC¥simulator.

1. DOMAIN_FILE= DOMAIN_ROOf "domains/arsonist.sim"
2. STATE_FILE= DOMAIN_ROON "states/defstate.sim"

For new domains:

domaingblocksworldcontains the .sim files that contain the logic for states (types, predicates, and
operators) that MIDCA's simulator will use. You can see an example of theséofi different

domains inmidcamidcaddomaing . The operatorso6 singedsotber e i n
identical to the operatorsdé definition in the

(2) Modify the path for the methods and operators for Pyhop planner. These two files are the
definition of operators and methods for the planner.

1. DECLARE_METHODS FYNgethods.declare_methods
2. DECLARE_OPERATORS_FtNM@erators.declare_ops

(3) Modify the utilty file for domain specific utility functiondlocksworldutil.py is a file that
contains any domain specific utility functiofts the blocksworlddomain ThePyhopplanner
uses its own state representation which requires translation to and from Mi&X{€#\ (she state
specified in blocksworld/domairiséim file). Forblocksworldthis translation happens in util.py,
specifically the functions pyhop_state_from_world() and pyhop_tasks_from_goals(). Many other
useful utility functions are located here, imding how to draw an ascii representation of the
world state in a terminal (optional, but useful).

(4) Modify the file that createthe MIDCA objectThis object is a instance othe PhaseManager
class created to insert, append and run mochfl@dIDCA_14. Setting the planner to usthe
Pyhop plannewhile passng the util file along withthe methods and operators as paramei®rs
as follows

1. myMidca.append_module("Plan" ,

2. planning.PyHopPlanner(util.pyhop_state_from_world,

3. util.pyhop_tasks_from_goals,

4 DECLARE_METHODS_FUNC,

5 DECLARE_OPERATORS_FUNC))

10

https://github.com/COLAB2/midca
https://github.com/COLAB2/midca/tree/master/midca
https://github.com/COLAB2/midca/tree/master/midca/examples
https://github.com/COLAB2/midca/tree/master/midca/domains
https://github.com/COLAB2/midca/tree/master/midca/domains/blocksworld
https://github.com/COLAB2/midca
https://github.com/COLAB2/midca/tree/master/midca
https://github.com/COLAB2/midca/tree/master/midca/domains

'® @ examples — Python cogsci_demo.py — 80x24

Simulator: no actions selected yet by MIDCA.
/A

Next MIDCA command:
kkkkkk Starting Perceive Phase kkskkxkk

World observed.
Next MIDCA command:

kkkkkk Starting Interpret Phase soekkskskk

TF-Tree goal generated: Goal(C_, B_, predicate: on)
Next MIDCA command:

Figure 5. MIDCA_1.4 output during the cogsci_demo example.

Blocksworld domain with JISHOP Planner

You can run an example script nansiohple_run_jshop.pfrom midcamidcadexamplesfolder,
or you can write your own script.

(1) The domain file and state files need to be defined for the MIDCA simulator.

1. DOMAIN_FILE= DOMAIN_ROOf "domains/arsonist.sim
2. STATE_FILE= DOMAIN_ROON "states/defstate_jshop.sim"

(2) The domain file and state file path need to be defined for the JSHOP planner.

1. JSHOP_DOMAIN_FILE MIDCA_ROO¥F "domains/jshop_domains/blocks_world/blocksworld.shp"
2. JSHOP_STATE_FILE MIDCA_ROO¥ "domains/jshop_domains/blocks_world/bw_ran_problems_5.shp"

(3) Set the util fileblocksworldutil.py is a file that contains any domaspecific utility functions.

The JSHOP Planner uses its own state representation which requires translation to and from
MIDCA states. Forblocksworld this translation happens in util.py, specifically the functions
jshop_state_from_world() and jshop_tasks from_goals(). Many other uséfylfunctions are
located here, including how to draw an ASCII representation of the world state in a terminal
(optional, but useful).

(4) Set the planner to use JSHOP planner and pass the util functions and JSHOP domain file and
state file as parameger

11

https://github.com/COLAB2/midca
https://github.com/COLAB2/midca/tree/master/midca
https://github.com/COLAB2/midca/tree/master/midca/examples

1. myMidca.append_module("Plan" ,

2. planning.JSHOPPIlanner(util.jshop_state_from_world,

3. util.jshop_tasks_from_goals,
4 JSHOP_DOMAIN_FILE,

5 JSHOP_STATE_FILE))

4. Interpretation

Perception takes as inppgrcepts from the environment and produces state predicates as output.
Interpretation makes sense out of the state by matching it with expectations from the intended plan

and knowledge structures in memaunyd creating a model of the current sequence @ftevand

state of the worldl n parti cul ar, i f MI DCAOGOs expectatior
perceive, it needs to explain the difference and formulate a new goal if necessary. The process it
uses to perform this function is called G@alven Auonomy (GDA).

The interpret phase has been at the core of our research efforts. It is implemented as a GDA
procedure that uses both a bottam datadriven track and a tedown, knowledge rich track

(Cox, Maynord, Paisner, Perlis, & Oates, 2013). MIDCA dses both of these processes to
analyze the current world state and determine which, if any, new goals it should attempt to pursue.
The details of this process are described belowhdrcogsci_demo.pgxample, thiss the phase

in which MIDCA noticesan anomaly in the blocksworld (e.g., a block on fire) and decides what

to do about it.

The interpret phase of MIDCA is implemented by two GDA processes that combine to generate
new goals based on the features of the world the agent observes. We caltdbesses thB-

track, which is a data driven, botteap approach, and thétrack, which is knowledge rich and
top-down (Paisner, Cox, Maynord, & Perlis, 2014 statistical anomaly detector constitutes the

first step of the Etrack, a neural network identifies lelvel causal attributes of detected
anomalies, and a goal classifier, trained using methods from machine learning, formulates goals.
The K-track isimplemented as a cabased explanation process.

The representations for expectations significantly differ between the two traekackk
expectations come from explicit knowledge structures such as action models used for planning and
ontological concepial categories used for interpretation. Predicted effects in the former and
attribute constraints in the latter constitute expectations. By contrasacl expectations are
implicit. Here the implied expectation is that the probabilistic distributiom frdnich observations

are sampled will remain the same. When the difference between expected and perceived
distribution is statistically significant, an expectation violation is raised.

4.1.D-Track Goal Generation

The Dtrack interpretation procedure uses ael@pproach for noting anomalies. We apply the
statisticaldistancemetric called the Adistance to streams of predicate counts in the perceptual

input (Cox,Oates, Paisner, & Perlis, 201%ielding a measurement of how the distributions of
predicates dier from a base stat@his enables MIDCA to detect regioims which statistical
distributions of predicates differ from previously observed inpUt. DCA6s i mpl i ci t a:
is thatwhere change occurs problemayexist.

12

When a change is detected sé&verity and type can be determined by reference to a neural network

in which nodes represent categories of normal and anomalous states. This network is generated
dynamically with the growing neural gas algorithm (Paisner, Perlis, & Cox, 2013) astthekD
processes perceptual input. This process leverages the results of analysisdmgthnée to
generate anomaly prototypes, each of which represents the typical member of a set of similar
anomalies the system has encountered. When a new state is taggeunalous by Alistance,

the GNG net associates it with one of these groups and outputs the magnitude, predicate type, and
valence of the anomaly.

Goal gemration is achieved in MIDCA_1.dsing TFTrees (Maynord, Cox, Paisner, & Perlis,
2013), machindearning classification structusehat combinetwo algorithms which work over

the predicate representation of the blocksworld domain. The first of these algorithms is Tilde
(Blockeel, & De Raedt, 1997), which is itself a generalization of the standardi€eision tree
algorithm. The second algorithm is FOIL (Quinlan, 1990), an algorithm which, given a set of
examples in predicate representation reflecting some concept, induces a rule consisting of
conjunctions of predicates that identify the concept. Gavenorld state, a THree first uses Tilde

to classify the state into one of a set of scenafash scenario ishenassociated with a rule
generated by FOIL. Once that rule is obtained, groundings of the arguments of the predicates in
that rule are peraoted until either a grounding that satisfies the rule is found (in which case a goal
is generated) or until all permutations have been eliminated as possibilities (in which case no goal
is generated). The structure of a-TFee is a tree where in internabdes are produced by Tilde

and leaf nodes are rules produced by F®igure6 defcts the stucture of the TF'ree MIDCA

uses in cycling through thelock arrangements.

| clear{a),on(A,B) table(B) ‘

ng

goal_on(X.Y) :-
oniX, 2}, on(Y,Q), on(Z.Y), square(d).

goal_oniX,¥Y) -

on{X,Z). on(Y.Q), onlQ.Z), X=<=0Q. .
goal_on(X,¥) :-
clear(Y), square(¥), triangle(x).

Figure 6. Depiction of the TF-Tree used in cycling through the 3 block configurations.

triangle{A)

For example given the midd#ate ofFigure5, triangleD is clear, it is on the table, and the table

is a table. Thus we take the right branch | ab
we take t he fy atshe righimostieaftof the tree.alherldafwude then binds the
variable Y to the clear square C, and the resulting goal is to have triangle D on square C.

The construction of a Free requires a training corpus consisting of world states and associated
correct and incorrect goals. In simple worldsTifees can be constructed which have perfect or
near perfect accuracy using small training corpora. Corpora have to be constructed by humans, as
labels need to be attached to potential goals in various wtatds. For simple worlds corpus
construction does not carry an excessive burden, but that burden increases with the complexity of
the world. Because a THee is a static structure trained on the specifics of the world, when the
world changes, even in nonways, a new training corpus has to be constructed and a new TF

13

Tree trained. However, the corpus to create a simple treeeéoting to fires geeFigure 7)
consisted of only four examples.

anfiredA)

YIS

e
putout {X) - GnTired X)

Figure 7. TF-Tree that generates goals to put out fires.

4.2.K-Track Goal Generation

The K-track GDA procedure uses the XPLAIN system (Cox & Burstein, ROUBLAIN is built

on top of the MetsAQUA introspective story understanding system (Cox and Ram 1999) and is
used in MIDCA to detect and explain problems in the input perceptual representations. The
systembs interpretati onbuildagdausal explanatory Graphdilear st a n
link subgraph representatioms a way thatminimizes the number of connected components.
XPLAIN uses a multistrategy approachtlds problem Thus, the togevel goal is to choose a
comprehension method (e.g., ptiprocessing, cadeased reasoning, or explanation generation)

by which it can understand an input. When an anomalous or otherwise interesting input is detected,
the system builds an explanation of the event, incorporating it into the preexisting mduae| of
story. XPLAIN uses caskased knowledge representations implemented as frames tied together
by explamtionpatterns (Cox & Ram, 199%hat represent general causal structures.

XPLAIN relies on general domain knowledge, a case library of prior pla@nsas and a set of
general explanation patterns that are used to characterize useful explanations involving that
background knowledge. These knowledge structures are stored in a (currently) separate memory
subsystem and communicated through standard s$axk@nections to the rest of MIDCA.4.

XPLAIN uses an interegdriven, variable depth, interpretation process that controls the amount of
computational resources applied to the comprehension task. For example an assertion that triangle
D is picked up gemates no interest, because it represents normal actions that an agent does on a
regular basis. But XPLAIN classifies blogkburning to be a violent action and, thus according

to its interest criterion, interesting. It explains #wtion by hypothesizinthat the burning was
caused by an arsonist. An abstract explanation patteridbéesl), or XP, retrieved from memory
instantiates this explanation, and the system incorporates it into the current model of the actions in
the input Astoryo and passes it as output to

The ARSONIST-XP asserts that the lighting of the block caused heat that together with oxygen
and fuel (the block itself) caused the block to burn. The arsonist lit the block because he wanted
the blockds burning state t haistocoentewua vilrerdblef r o m
antecedent of the XP. In this case the deepest antecedent is the variable bindanghe! light

object action. This can be blocked by either removing the actor or removing the igietice.

The choice is the actor, andjaal to apprehend the arsonist is thereby generated.

14

Table 1. The arsonist explanation pattern

(define -frame ARSONISF XP

(actor (criminal - volitional - agent))
(object (physical - object))
(antecedent (ignition - Xp

(actor =actor)
(object =object)

(ante (light -object=l -0
(actor =actor)
(instrumental - object

(ignition - device))))
(conseq =heat)))
(consequent (forced - by - states
(object =object)
(heat =heat)
(conseq (burns =b
(object =object)))))
(heat (temperature (domain =object)
(co - domain very - hot.0)))
(role (actor (domain =ante))
(co - domain =actor)))
(explains =role)
(pre - xp- nodes(=actor =consequent =object =role))
(internal - nodes nil.0)
(xp - asserted - nodes (=antecedent))
(link1 (results
(domain =antecedent))
(co - domain =consequent)))
(link2 (xp -instrumental - scene - >actor
(actor =actor)
(action =l -0)
(main - action =b)
(role =role))))

5. The Implementation of MIDCA, Version 1.4

A series of python modules organized into phases and centered about a core memory structure
implementsVersion 1.4 ofMIDCA. Wer e v i e w NvhaBe&Adinslude implementation

details. Then we describe how to add a new module to the MIDCA syB@awing this
description, we e x @idarovide dmpl€sAfit epergtiand then griefyy p h
describe the concept of goal operatidfinally, we specify how to install and run teystemcode.

5.1.Phases and Mdules in MIDCA.

Modules make pi the phasediscussed in the previous sectidviore than one module can make
up a phase, in which case the ongewhichmoduleswill run needs to bgpecified.Table2 is an
example code snippet of initializing the modules and phases of MIDCA.

Table 2 Code snippet of module to phase assignment.

1. myMidca.append_module("Perceive” , perceive.PerfectObserver())
2. myMidca.append_module("Interpret" , note.SimpleDetect())

3. myMidca.append_module("Interpret" , assess.SimpleExplain())
4. myMidca.append_module("Interpret” , guide.SimpleGoalGen())
5. myMidca.append_module("Eval" , evaluate.SimpleEval())

6. myMidca.append_module("Intend" , intend.Simplelntend())

7. myMidca.append_module("Plan" , planning.PyHOPPIlanner())

8. myMidca.append_module("Act" , act.SimpleAct())

15

ExaminingTable2, we see thasome phases only have a single modila examplePerceive
uses ainglemodule calld PerfectObservewhen interacting with the MIDCA simulatoDther
phasesuch as Interpret have multiple modules (as you can se&inwiflieDetect, SimpleExplain,
and SimpleGoalGenThe most common module for Evaluat&SisnpleEvalwhich checks to see

if any goals have been completed, and if so, drops them. Another usefukrfrad shown here)
for Eval is Scorerwhich is used to calculate the scdvdDCA has received from a recently
achieved goalSimplelntencchooses one or more goalich are stored in a list structure in the
memory variablenemCURRENT_GOALS Then in ths examplethe PyHOPRannergenerates

a sequence of actions that will achieve the goal(3.input to the planner is the current state of
the world (usually stored in mem.STATE or as the last item in mem.STAHES the current
goal(s). The output is gted on the goal graph (described ac#on5.3). Finally, the most common
modulefor the Act phase iSimpleActvhich chooses the next action from the current plan, if one
exists.For an example of an Act module operating on a robot, se&sirehronousAanodule.

The order in which the modules are appended is the order the modules Milbugtit is possible

to pass an additional argument &ppend_modulewhich specifies the ordef(see code
documentation)While there is no constraint that a module must only be used in a single phase,
most often modules are designed for a specific phase and used for thairphase

In an agent with only cognitivievel behavior, each module is executed sequentially within each
phase, and when the last module of a phase is executed, the first module of the next phase is
executed. When the last module of the last phase is xkc¢be first module of the first phase is
executed next, completing the cirdiégure8 shows an example of the order of execution, starting

with the Perceive phase.

Cognition-only MIDCA Agent Metacognition Example Modules

Metacognitive MetaCognitive

Phases Modules

Phases Modules
Perceive | IR | Monitor ’ N
WM ViRSimpleDetect_J)
Interpret Intend] [
Plan (1
Evaluate | STITEEEIN | Control !; " MRSir

I CINE Simpleintend ||

Figure 8. Module execution sequences (a) Example execution sequence of a cognitive-only agent
(orange, left); (b) Example execution of the modules at the metacognitive level (blue, right))

Metacognitive phases are implemented in a similar fashion as izegutitases, and in the current
version of MIDCA, a single metacognitive loop is rurbietween each cognitive level module
(seeFigure9). A single metacognitive loop refers to starting with the first module of the first
metacogrive phase and executing each metacognitive module until the last metacognitive module
of the lastmetacognitive phasgControl). Figure 10 showsthe orderin which all cognitive and

16

metacognitive modules are executdthe cognitivelevd phases stéing with Perceive

described in the next subsection.

MIDCA Agent with Metacognition-enabled MRSimpleMonitor Monitor
MRSimpleDetect Interpret
MRSimplelntend Intend
MRSimplePlan Plan
Phases Modules MRSimpleControl Control
e g
Perceive PerfectObserver 1 MRSimpleMonitor Monitor
/*4—; MRSimpleDetect Interpret
SimpleDetect :
— MRSimplelntend Intend
Interpret SimpleExplain MRSimplePlan Plan
_SimpleGoalGen MRSimpleControl el]!
S
Evaluate SimpleEval —
- MRSimpleMonitor Monitor
ICLEEEN Simpleintend MRSimpleDetect Interpret
- MRSimplelntend Intend
. MRSimplePlan Plan
MRSimpleControl Control
— .

Figure 9. Example showing interleaving of metacognitive modules continuing with examples from Figure 8

Execution Sequence of All Modules in an Metacognitive Agent [MRSimplelntend] Intend
[MRSimplePlan] Plan
Phases Modules [MRSimpleControl] Control
i
Perceive | | PerfectObserver | I = : ;‘:;?:;::/Ili:;or R—
[VRSimpieMonitor JRVELICS - [[———]] sl
- nterpre
MRSfmpIeDetect] Interpret [RSk] —
MRSlmpIeIntend] Intend [MRSimploPlan] o
an
MRSimplePlan Plan
[] [MRSimpleControl] Control
[MRSimpleControl] Control
o
@ SimpleDetect \ Evaluate [SimpleEval |
interpret | IMESTTIEVENTET | [Monitor [ViRsimpleMonitor JRNERITE
[MRSIHPIEDEterE] iaranat [MRSimpleDetect] Interpret
[MRSimplelntend] Intend [MRSimplelntend] Intend
[MRSimplePlan] Plan [MRSimplePlan] Plan
[MRSimpleControl] Control [MRSimpleControl } Control
|_SimpleExplain_| Intend Simplelntend]
[MRSimpleMonitor } Monitor .
[MRSimpleDetect Jlnterpret N

Figure 10. Complete sequence of all modules in the order they are executed in a metacognitive-enabled agent
(starting from the top left and continuing down, ending at the bottom right)

5.2. Adding a New Module

are

To add a cognitive or metacognitive module to MIDQAA4, start by locating the modules/ and
metamodules/ folderslhenew module wilbea .py file in either of these directories. It may make
sense to simply adtienew module into an existing .py file (i.e. adding a new class to interpret.py
or planning.py). A module in MIDCA st meet the followig criteria.

17

=

Inherit the BaseModule class foundnmdca/midc#base.py

no

Implement the init() method (note: this is different than the default __init__ () method, this
init() method will be called by MIDCA)

3. Implement the run() methadhis is the codéhat will run each time the module is executed.

4. Finally, after the module is ready, it must be assigned to a phase during the initialization
of the agent, which happens in a startup script found inntldea/midcéexamples/
directory. The startup script Iivcontain code likehe codeshownin Table 3. Make sure
to addthenew module here.

Modules have access MIDCAG smemory from the init() method arehn access this memory

later during subsequent calls to run(). For more ideas on how to implement a module, browse the
current modules found in the various .py files locateanidca/midcémodules/ and MIDCA
metamodules/

5.3. The Goal Graph and Examples

File: goals.py
Structure: 3 classes: Goal, GoalNode, GoalGraph

MI DCAOGs g o alimpgtan@atahstructsre tlhat maintains all goatsl associated plans

of MIDCA 1.4 The current goalthe agent is committed to achieviage stored outside the goal
graphin the CurrentGoalmemoryvariable The graph structure maintains a partial ordering of
unique goals. The root nodes of the graph contain goals that have precedence over the goals in
sulsequent child nodes. If a goal is inserted with less precedence than a root node, it will become
either a child of that root node or a child of that node and so on. Each goal node has the current
plan associated with achieving that goal. The followindetahows how each module in the
currentversion ofMIDCA interacts with théunction GoalGaph.

Table 3. Phases of MIDCA interaction with goal graph

Module Interaction with Goal Graph

Percieve (percieve.py : No Interaction

PerfectObserver)

Interpret #1 (note.py : No Interaction

IADistance AnomalyNoter)

Interpret #2 (guide.py : Inserts new goal into the goal graph

UserGoallnput)

Interpret #2 (guide.py : Iterates over the goals frogoalgraph.getAllGoals() to check if a block

TFStack) stacking goal already exists. If not, inserts the goal from th&r€E into
graph

Interpret #2 (guide.py : Inserts the goal from the THee into graph

TFFire) Checks the result of the goalgraph.insert function

Eval (evaluate.py : Checks to see if all goals are achieved and if so calls goalgraph.remov

SimpleEval) g) for each goal. Subsequently calls goalgraph.removeOldPlans()

18

Intend (intend.py : Checks to see if goalgraph has beegtialized. Calls

Simplelntend) goalgraph.getUnrestrictedGoals() and then sets those goals to the mer
\variable CURRENT_GOALS

Plan (planning.py: Calls goalgraph.getMatchingPlan(CURRENT_GOALS), if exists, it che

PyHopPlanner) validity. If no matching plans or plarare not valid, calls PyHOP and callg

goalgraph.addPlan(midcaPlan)

Act (act.py : SimpleAct) |lterates over each plan in
goalgraph.getAllMatchingPlans(CURRENT_GOALS) to return the plan
achieves the most goals.

Plans Plans are stored in a set in the goal gr&dms are added to the gaghph and are stored
in a set with all other plandn the future,planswill be storedin the node of each goalrhe
following functions provide interaction with the current planghie goal graph:

addPlan(plan): Adds the given plan into the current set of plans by calling theibwkt add()
function.

removePlan(plan):Removes the given plan by calling the binltset remove() function

removePlanGoals(plan):Removes all goals associated with the given plan. It checks the plan
object for its goals, and removes each of those.

removeOldPlans():Removes every plan whose goals are no longer in the goal graph.

allMatchingPlans(goals):Given 1or more goals, this will return all plans where the goal of the
plan is the same as the goal passed in as the argument.

getMatchingPlan(goals):Returns a plan whose goalset contains all given goals. If multiple plans
exist, it chooses the one with minimuertraneous goals, andtlie plangtie, the tie isbroken
arbitrarily. If no plan succeeds all the goals, returns None.

getBestPlan(goals)Returns the plan that achieves the most goals in the set of goals passed in as
an argument. Tries to achieve fewestraneous goals, and if no plan achieves any of the goals,
returns None.

Example with a plan that fails to achieve all goals

*rrekk Starting Perceive Phase ******
World observed. (No goal graph interaction)

*rxxxx Starting Interpret Phase **

No anomaly detected.

TF Tree goal generated: Goal(C_, B_, predicate: on)

#EAKE OEAO 11 CiAl AQGEOOO OE ks Pdikush)i 1 R DOAAEAAOA
Insert new goal into goal graph (insert(Goal(C_,B_, predicate: on)))

*rrekk Starting Eval Phase *rxx+*

No current goals. Skipping eval (no goalgraph interaction b/c CURRENT_GOALS is different than
goalgraph)

*rxxkx Starting Intend Phase ******

(calls getUnrestrictedGoals() and sets these to be the current goals, of which there isonly 1
right now)

19

Selecting goal(s): Goal(C_, B_, predicate: on)

Fkk Starting Plan Phase ******

(first a call to getMatchingPlan((Goal(C_,B_, predicate:on)) was made but returned empty so
proceeded to planning).

Planning...

Planning complete.

Plan: unstack(D_, B_) putdown(D_) pickup(C_) stack(C_, B_)

(after planning completed the plan (unstack(D_, B_) putdown(D_) pickup(C_) stack(C_, B_)) was
passed to goalgraph.addPlan())

*rxxkx Starting Act Phase ******

(calls goalgraph.getAllMatchingPlans() which only returns the following plan)
Selected action unstack(D_, B_) from plan:

unstack(D_, B_) putdown(D_) pickup(C_) stack(C_, B)

*rkkkx Starting Simulate Phase ******
simulating MIDCA action: unstack(D_, B_)

*kkkk S tarting Perceive Phase ******
World observed.
Next MIDCA command:

*ekkkk Starting Interpret Phase ***xxx
No anomaly detected.

MIDCA already has a block stacking goal. Skipping TF - Tree stacking goal generation
Please input a goal if desired. Otherwise, press enter to continue

on(A_,C))

Goal added.

Insert new goal into goal graph (insert(Goal(A_,C_, predicate: on)))
Please input a goal if desired. Otherwise, press enter to continue

*rrekx Starting Eval Phase *rx++*
(no plans are finished achieving goals so there are no goals to remove)
Not all goals achieved; Goal(C_, B_, predicate: on) is not true.

*rxkkx Starting Intend Phase ******

(calls getUnrestrictedGoals() and sets these to be the current goals)
Selecting goal(s): Goal(C_, B_, predicate: on) Goal(A_, C_, predicate: on)
Next MIDCA command:

*rrekk Starting Plan Pha Se Frrrrx

(calls getMatchingPlan(Goal(C_, B_, predicate: on) Goal(A_, C_, predicate: on)) which fails
AT A O OEA AOOOAT O pi Al AT AOT RO AEAT CAs
Planning...

Planning failed for Goal(C_, B_, predicate: on) Goal(A_, C_, predicate: on)

Next MIDCA command:

*rxkkx Starting Act Phase ******

(calls goalgraph.getAllMatchingPlans() which only returns the following plan)
Retrieved plan does not achieve all goals. Trying again.

Plan: unstack(D_, B_) putdown(D_) pickup(C_) stack(C_, B_)

Goals achieved: ['Goal(C_, B_, predicate: on)’]

Best plan does not achieve all goals.

Plan: unstack(D_, B_) putdown(D_) pickup(C_) stack(C_, B_)

Goals achieved: ['Goal(C_, B_, predicate: on)']

Selected action putdown(D_) from plan:

unstack(D_, B_) putdown(D_) pickup(C_) stack(C_, B)

20

Examples ofoal graph drawings

To produce a pdf drawing of the goal graph at any time, just run the following MIDCA command.
drawgoalgraph

Example 1

Here is a goal graph when multiple fire and block stacking goals are given with the following
compare function:

1. def preferFire(goall, goal2):

2. if ‘'predicate’ not in goall or 'predicate’ not in goal2:

3. return 0O

4. elif ~ goall['predicate’] == 'onfire’ and goal2['predicate’] != ‘onfire’
5. return -1

6. elif goall['predicate’] != ‘onfire’ and goal?['predicate’] == 'onfire’
7. return 1

8. return 0

Goal(A_, negate: True, predicate: onfire) Goal(C_, negate: True, predicate: onfire)

Goal(B_, C_, predicate: on) Goal(C_, B_, predicate: on)

Figure 11. Goal graph for Example 1

Example 2

Figurel2illustrates whaa goal grapimay look likewhen multiple fire and block stacking goals
are given with the following compare function:

1. def preferAnythingButFire(goall, goal2):

2 if ‘'predicate’ not in goall or 'predicate' not in goal2:

3 return 0

4. elif goall['predicate’] == 'onfire' and goal2['predicate’] != ‘onfire'
5. return 1

6 elif goall['predicate’] != ‘onfire’ and goal2['predicate’] == ‘onfire’
7 return -1

8 return 0

(eliA, B, predicate: on] (oaliC_, A, predicate: on

GaaliC, B_, predicate: on} Gual(D, C_, prodicate:on)

Wy

GoaliC . negate: True, prdicate: onfire) GoalB . negate: Troe, predicate:onfire) GoaliA. negate: Troe, predicate:onfire)

GoaltD_, negate: True, predicae; onfire}

Figure 12. Goal graph for Example 2

21

5.4.Goal Operations

We recognize a number of operations on goals and distinguish them from operations on plans
(Cox, Dannenhauer, & Kondrakunta, 2017). Although the purpose of a plan is to establish a state
of the world that satisfies a goal or a set of goals, we argue that the separation of goal and planning
operations provides at least an organizational benefit watheognitive architecture. However,

like Roberts and colleagues, who combine both types of operations into a geaaiclde
framework (Roberts et al., 2015), we acknowledge the close relationship between thakilgo.

3 classifiesthe ten primary operations on goal expressions.

MIDCA Version 1.4implementsmany of the goal operationshownin Table4. Those are as
follows.

1. MIDCA formulates goals (goal formulation) when an anomaly is detected in the blocks
worl d domain. User can find the example in fc

2. MIDCA selectsa goal (goal selection) from all the goals based on two selection methods:
FIFO and a smart selection method. User can find the implementation in the example files
Acogsci _demo_mortar _constructiono and Arestau

3. MIDCA suspends the goal (goal susgen$ which it is currently working on when an
anomaly is detected and performs the formulated goal.

4. MIDCA resumes a previously suspended goal (goal resumption) and continues to work on
t hat goal. User can find these in fAo0.

5. MIDCA performs the goal chrege operation when the resources are not sufficient for the
agent to continue on with the goal. User can observe this in the example file
Acogsci _demo_mortaro. The-omnpento dimenmges t he g

6. MIDCA also performs the goal monitoring@gtion (Dannenhauer & Cox, 2018)

7. MIDCA checks if the goal is achieved (goal achievement) this operation is performed in
the evaluate phase of MIDCA.

Table 4. Fundamental set of goal operations (adapted from Cox, Dannenhauer, & Kondrakunta, 2017)

No. Operation Description Phase
1 Goal formulation Create a new pending goal Interpret
2 Goal selection Commit to an active goal from the set of pending gog Intend
3 Goal suspension Pause in pursuit of a currenttpmmitted goal Not Implemented
4 Goal resumption Resume pursuit of a suspended goal Not Implemented

22

5 Goal change Change a goal into a similar one that is close to the | Control
original goal
6 Goal monitoring Track that a goal maintains iisefulness Interpret
7 Goal delegation Find another agent willing to pursue a goal for you | Not Implemented
8 Goal interpretation Infer the meaning of a stated intent by another agent| Not Implemented
9 Goal abandonment Remove a pending @ommitted goal from Interpret
consideration
10 | Goal achievement Verify that a goal state is satisfied in some environm¢ Eval

5.5.How to Install and Run Version 1.4 of theMIDCA Architecture

Installing MIDCA

1. Obtain a copy of MIDCA by cloning theepository or downloading the source directory.
(https://github.com/COLAB2/midca)

2. Make sure the name of the top level folder is spelled exécityi d(it midcahas been
downloaded as a zip file, you will W@to rename it as it saves the foldenagdtamaster’)

A

3. Run the command O6python setup.py install b

T 1'f you plan to make changes to MnPCA, dc
changes you make will be immediately updated when you run MIDCA

1 Notethat NumPy (http://www.numpy.org/) should be installed automatically when
you run O6python setup.py installé (or w
that fails, you will need to install the package yoursétiu can check that NumPy
isinstalledy runni ng python and typing O6i mpor
have successfully installed it. Otherwise you will get an error message.

4. (Optional) Graphviz is needed for drawing graphs and saving them to a pdf. It must be
installed manually.
1 www.graphviz.org/

Using MIDCA with simulated worlds using a predicate representation

1. Create a simple MIDCA version which allows tdaased goals to be input at runtime

=

#set locations of files defining domain and world state
domainFilename = "myDomainFile"
stateFileName = "myStateFile"

wn

23

https://github.com/COLAB2/midca
http://www.graphviz.org/

from MIDCA.examples import predicateworld

No ok

myMIDCA= predicateworld.UserGoalsMidca(domainFilename, stateFileName)

2. See all phases in a MIDCA instance

1. print myMIDCA.get_phases()

3. Add/remove phases

1. myMidca.insert_phase(phaseName, i)
2. myMidca.append_phase(phaseName)
3. myMidca.remove_phase(phaseName) #throws ValueError if phase named phaseNamenot present

4. See the classes that are implementing a phase

1. print myMidca.get_modules(phaseName)

5. @ Create a custom phaseplementation (moduleyithout inheriting from theasemodule
class

Create a python class with at least these two methods:

1. init(self, world, mem)
2. run(self, cycle, verbose)

world is the initial world state

mem i s MIDCAG6s centr al me mor y

cycle is thecycle # (starting with 1)

verbose is the level of output requested

the init method should do any setup the module requires. It will be called once for
each module during MIDCA's initialization. Init methods will be called in phase
order.

1 the runmethod will be called once per cycle in phase order. This method will define
what the module actually does. Withiplaase, modules will be called in the order
listed, which can be modified as shown in 6.

=4 =4 =4 -8 -4

RunningMIDCA
For examples, seaidca/midcanoduleg*

b) Create a custom phase implementation (moduieyv style:
1 create a subclass of the base.BaseModule class. To do this, you must implement the
run(self, cycle, verbose) method, which defines the module's behavior. In this

method, you can access MIDCA®mory through the self.mem field.

6. Add/remove custom or predefined modules to/from MIDCA

24

ogkwhpE

~

=

1.

myModule = MyModule() #
assert hasattr(myModule, 'run') and hasattr(myModule, ‘init')

myMidca.append_module(phaseName, myModule)

myMidca.insert_module(phaseName, = myModule, i)

#i is the index of where this module should be placed during the phase. This is for ord
ering when more than one module is used in a single phase.

myMidca.cle ar_phase(phaseName) #removes all modules implementing the phase
Initalize
myMidca.init()

By default, MIDCA runs ininteractive modeThere are two modes: interactive and -non
interactive.

myMidca.run() #by Default ; runs in interactive mode.
myMidca.run(usinglnterface=False) # non- interactive mode
logging

From 'outside’ MIDCAuse the following.

myMidca.logger.log(msg)

From inside a modul#hat inherits BaseModulieom a MIDCA modules run method, use
the following.

self.log(msg)

Note: by default, MIDCA will automatically log everything sent to standard output. To
turn this off, set the MIDCA constructor argument 'logOutput' to False.

Note: by default, MIDCA also logs eaaghemory access. To turn this off, set the MIDCA
constructor argument logMemory to False, or set myMidca.mem.logEachAccess to False.

Understanding how MIDCA works frobmowsing the sourceode

1.

Start with the base.py file. The method PhaseManager.run()edefire behavior of
MIDCA in interactive mode, and follosvthe relationship between user inputs and
associated function cahghich illustratesvhat MIDCA is doing.

Each module is defined independently and they interact only through memory. In the
mem.py file, the Memory class has a list of constants that define keys for the default
MIDCA memory structures (e.g. the goal graph, observed world states). Thénbuilt
MIDCA modules generally interact only through reading/writing toviikeies referredot

by thesekeys.

25

3. To understand MIDCA behavior at a more figained level, it is necessary to look
through module by module to see what each one is doing. Check the MIDCA object to see
what modules it runs in each phase (see docs abmweting a moduleshould show the
file and class name of its implementation), then go to the file in the modules folder to see
what it doesEspecially mtethe calls to the memory structure (self.mem), since these are
the 1/0.

Runtime Commands
The following commandsan ke used wheMIDCA is run in interactive mode

1. change.This allows the user to change the state of the world. The user can either give a
file name to be loaded or enter atoms one at a time.

2. drawgoalgraph. Generates a visual representation of the curreo&l ggraph.
Requirement: Using this command requires Graphviz to be installed
(http://www.graphviz.org/).

3. help. Displays the possible commands that can be given to MIDCA during runtime (the
commands detailed here)

4. log. Prompts the user to enter a message which will be written to the log file. If the user
doesndt enter a message, no | og message is

5. memorydump.Thi s all ows the user to see variabl e
when the user wants to see the value of a variable. The user can either see all the variables
and their values, or enter a single variable name and just see that value. If MID@&&has b
running a long time, the output may take up more than the screen, therefore just looking
for the variable can save space.

6. printtrace. This will output a text representation of the entire trace up until the last phase
executed by MIDCA.

7. q. Quit MIDCA.
8. skip (&optional x=1). Skips ahead x cycles, or one full cycle if x is not given.
9. show.Displays the world.

10.toggle meta verboseTurn off/on meta output. It is useful to turn this off to reduce the
amount of text seen while running MIDCA. The first timmning this command it will
turn the meta output OFF and then it can be turned on later by running the command again.

All the above commands can be typed in the terminal while MIDCA is running.
6. Defining a New Domain

To add a new domain into MIDCA|I of the domairspecific material should be located in the
domains/ folder. Here you add a subfolder with the name of your domain. Domain folders are
structured as follows

26

http://www.graphviz.org/

 midcadmidca

o domains/
A your-newdomair
A init.py
A domains/
A states/
A plan/
A util.py

your-newdomaitinit.py contains nothingout an init file ismandatoryfor all folders in MIDCA.

your-newdomairidomains/ contains the .sim files that contain the logic for states (types,
predicates, and operators) that MIDCA's simulator will use (see
domains/blocksworld/domains/arsonist.sim for an examMéDCA only ever uses one of these
.sim files, but variations of the domaian be useful stheremay bemultiple .sim files.

your-newdomairistates/ contains the starting states for MIDCA. See thie
domains/blocksworld/states/defstate fire.sim for an example.

your-newdomairiplan/ is optional, it contains any material the planner will make use of (e.g.,
HTN methods and operators, domajecific heuristics).

your-newdomairiutil.py is a file thatontains any domain specific utility functions. For example,

the blocksworld domain uses an HTN planner PyHOP (the planner can be found in
modules/planning.py). The PyHOP Planner uses its own state representation which requires
translation to and from MIDA states (the state specified in _ym@wdomain_/domains/ .sim

file). For blocksworld this translation happens in util.py, specificalya the functions
pyhop_state from_world() and pyhop_tasks_from_goals(). Many other useful utility functions are
located here, including how to draw an ascii representation of the world state in a terminal
(optional, but useful).

Adding a new domain into MIDCA requires various domain knowledge, and this is all organized
into the structure shown above. Mostly, this isn@ke it convenient to locate anything specific to

a domain. When writing startup script of MIDCA, the domain location needs to be given (see
examples/cogsci_demo.py for an example).

This is summarized in the following steps:

1. add a new folder undenidcadmidcadomains/ that is
midca/midcaomains/my_new_domain/)

2. createan init.py file so it's recognized as a module (you can run 'touch init.py')

3. add sub folders for domain and state filds{ is, the directory
midca/midcaomains/my_new_domain/domaincdirectory
midca/midcadomains/my_new_domain/state). The reason for having separate folders for

27

these is that you may decide to have slight variations on a single domain. For example, in
blocks world we have variations that involve mortar and variatioeisinvolve fire
extinguishers. You may also want to have various starting states for each domain, which

will be stored in thestatesubfolder.

4. add a util.py file that implements necessary functions

5. customize your script to run the domaindhanging the following variables and choosing

which modules you want to use

6. (IMPORTANT) Modify midca/midcésetup.py to include the new domain folder

7. Logging and Debuggingn MIDCA 1.4

7.1.Logging

Initiating and disabling a log file

Logging isinitialized in MIDCA_1.4by default If the userdoes notwant to use log fileshen
thegycan ¢ hange logehaeledv airni apbhlaes e manager <c¢cl ass of b

Location of log files

Log files are stored in the directory: midca/midca/examples/log. Eachilteneser runMIDCA,
there will be anewfolder created. The folder name is the current date andaimeontains the
log information. The path to the folder can also be viewed on the screen when we run MIDCA. An

example is shown in tHeigurel3.

Sravyas-MBP:examples sravyakondrakunta$ python cogsci_demo.py

Logger: logging this run in /Users/sravyakondrakunta/Documents/git/midca/midca/examples/log/2017-10-24 13_48_27

Figure 13. Example specification of the MIDCA_1.4 log file

Files in the log folder:

The folder containthreef i | es named

can be opened in any text editor.

Al ogodi Mi ME€EMoODODYt Aot €ssadh

1 Al o dog file contains the information about the variables accessed in the memory for each
step and the verbose statements printed on the screerthigple@se and during initialization.

Figurel4 shows a part of log file.

.000331 - Memory access at key __goals

.000460 - Goal Graph initialized.

.000600 - [cognitive] Initializing Simulate module 1
FireReset...done.

.000697 - [cognitive] Initializing Simulate module 2
MidcaActionSimulator...done.

.000788 - [cognitive] Initializing Simulate module 3
ArsonSimulator...done.

28

.000942 - [cognitive] Initializing Simulate module 4
ASCIIWorldViewer...done.

.001038 - [cognitive] Initializing Perceive module 1
PerfectObserver...done.
.002258 - Memory access at key A - Distance memory

Figure 14. Code snippet of a log file.

1T AMemor y TATbisisthe subset of informatiowithin the log, which contains only the
informationpertaining tocaccessing memory variablesMiDCA.. Figure15 represents a part
of memory access file. This gives the description of variables present in memory when they
are accessed.

.000331 - Memory access at key _ goals
.002258 - Memory access at key A - Distance memory
.002707 - Memory access at key Last Scored Goal
.002764 - Memory access at key Score
.002973 - Memory access at key __ PlanningCount
.003167 - Memory access at key __goals
.223371 - Starting cycle 0
223945 - xR Giarting Simu late Phase ***+**
Figure 15. Code snippet of memory access file.

T A MI DCA a Thisfilairéptesents the information related to only the verbose statements
for each phase. All of the user experiments can be saved enthésuser can look at this to
trace allthe previous experimentgigure16 showsa snippet ofa MIDCA output file.

.000460 - Goal Graph initialized.

.000600 - [cognitive] Initializing Simulate module 1 FireReset...done.
.000697 - [cognitive] Initializing Simulate mo dule 2
MidcaActionSimulator...done.

.000788 - [cognitive] Initializing Simulate module 3 ArsonSimulator...done.

.000942 - [cognitive] Initializing Simulate module 4

ASCIlIWorldViewer...done.

.001038 - [cognitive] Initializing Perceive module 1

PerfectObs erver...done.

.002337 - [cognitive] Initializing Interpret module 1

ADistanceAnomalyNoter...done.

.002414 - [cognitive] Initializing Interpret module 2 TFStack...done.
Figure 16. Code snippet of the MIDCA_1.4 output file.

7.2. Debugging

The debugging action can be performed differently for various,files, the examples can be
debugged by tracking different phases

Debugging in MIDCA1.4

MIDCA always runs in a cycle of phases. Each phase is displayed on the screen, which helps the

user to identify the verbose statements belonging to the specific ploasse full MIDCA output,

us e taghleemetd verbose command i f in interactive mode.

29

Debugging through log files

Log files contain the information of the variable accessed in memory for each Wits¢his
information we can easily debug to find what memory variable is accessed and if axistsyr
we can find the last access to themory variable and take it from theY®ith the help of log files,
we can also store our experiments run MIRCA session.

8. Advanced Features

8.1.The MIDCA_1.4 API to ROS

We are working toward cooperative interaction between humans and machines by\sttrtang

small instructional problem for the robot to accomplish. A Human asks the robot to pick up a
colored block. The Robot needs to understand what the human wants and create a plan to achieve
it. The MIDCA architecture provides the reasoning to praesise command and execute the

right actions.

1. Speech to text:Audio signal is translated to text string percept.

2. Infer goal: The text is mapped to user intent.

3. Create plan: The SHOP2 planner creates a plan to achieve goal.
4. Execute plan:Actions sent tAPI.

We added aapplication programming interface (AR MIDCA to communicate with ROS and

a Baxter humanoid robdseeFigure 17). It is responsibldor sending messages to ROS as
requested by MIDCA, and for placing messages received in appropriate queues for MIDCA to
process. We created other ROS nodes which are responsible for doing specific actions, such as
moving the Baxt er 0 objea representateoms.d TheSeo acomngirecate with g
MIDCA through the API.

MIDCA Metacognitive cycle
|
‘ Memory ‘
)

Buffers

Control

action .
action and

“Feedbacl{‘ Audio H Image “ perception

percention

Gazebo Simulator

Figure 17. Interfaces between MIDCA and the external world and between cognition and metacognition

30

In this API, the types of ingoing and outgoing messages on each ROS topic and their meaning is
specified. As these messages are asynchronously received, a set of MIDCA handlers put them in
appropriate buffers within a partition of MIDCA memgorDuring the Perceive phase, these
messages wi l |l be accessed and stored in MIDCA

The interface treats MIDCA as a ROS node which can send and receive messages to other ROS
nodes. A ROS node is an executable that uses ROS to communicaithefitROShodesAt the
beginning, a RosMidca object is created which is responsible for sending messages to ROS as
requested by MIDCA and for placing messages received in appropriate queues for MIDCA to
process. Different unique topics will be used fdfedent ingoing and outgoing messagAs.

external voice recognition node is constantly running which publishes utterances as string
messages on UTTERENCE_TOPIC. Once MIDCA receives any message on this topic it puts the
message on an appropriate queue tvintdl be processed in the perceive phase later.

In thePerceive phase, MIDCA reads messages from all the queues, processes them and stores the
processed data i n IMheh@pr@ighass MIDCA anecka torsee if it has

receivedanyinstut i on. | f it detects the message 6get
the red blockd. Once the goal i's created, it

In the Plan phase, after it creates a high level plan for the selected goal, it operetiaach

action using a mapping between higlel actions and directly executable methods for the robot.

For example, the high level action reach(object) is instantiated in a method which sends out a ROS
message to the node which operates the arm, riqgatedly checks for feedback indicating
success or failure. Once all actions in a plan are complete, the plan itself is considered complete.
If any action fails, the plan is considered failed.

In theAct phase, MIDCA loads a plan for the current goahfraemory. In each cycle, one action
starts and if it is completed in a certain amount of time, the next action will start in the next cycle.
|l f any action fails, the rest of the actions

We created other ROS nodes for our purpose which are responsible for doing specific actions, such
as moving the Baxterdés ar ms, and for getting
MIDCA through the API. These processes listen to different ROSsdpr MIDCA command

and act on them appropriately. pieviouslymentionedthe Act phase contaimsfferent modules

When an action is chose, these modyeslish the correct commanavhich the lowlevel
processearelistening to

8.2. MIDCA for the Baxter Humanoid Robot

In this section, we describe a demo with a Baxter robot performing in Blocksworld domain. The
robot is asked to stack blocks, unstack them, put them on the table, or give a block to the user.

Blocksworlddomainfor the Baxter

Consider anxample when Baxter is given the g@ak"@iY . This goal is mapped to the root task
moveblocks in Pyhop planner. The planner decomposesveblocks to the norprimitive
2 N Q0 QIOH "% & Y Ytasks in that order. The task ‘Qui'O¥ decomposes to the

31

primitive tasks & ¢ 0 Qi €@ FQI ¢ 1Of andi o ¢ A Ydecomposes to the primitive
tasks G € DV QDEW h 0 O'ONQ.

ROS opics

The Topic Names used in this demo are listed below.

1. OBJ_LOC_TOPIC: the topic on which object detection messages are published

1 must be changed in MIDCA run script(baxter_run.py) and object detection node
(e.g. OD.py)

2. UTTERANCE_TORPIC: the topic on which utterances (e.g. commands) baxter hears are
published

1 must be changed in MIDCA run script(baxter_run.py) and utterance listener node

3. POINT_TOPIC: the topic on which point commands from MIDCA are published.

1 must be changkin asynch.py and in point effector node (grabbing.py reads asynch's value)

External steps (sensors and effectors)
These can be started in any order, but must all be started for the demo to work.

1. Start an external object detection ROS node which publigintStampedOS msg on
OBJ_LOC_TOPIC. Simulated Implementation: drone_location_simulator.py, OD.py.

2. Start an external voice recognition node which publishes utterances asrsssgges on
UTTERANCE_TOPIC. Implementation is currently in the baxteg cepository, to be
added to MIDCA.

3. Start an external pointing effector node which listens for point commamds
POINT_TOPIC. A point command will be in the form of a String message encoding a
Dictionary containing X,y,z cooridnates. rosrun.py contairethods for transforming
between String and dict; see examples/_baxter/pointing.py for an implementation. This
node should also publish feedback when it encounters an error or completes its task. This
too is implemented in pointing.py.

MIDCA setup: all stepfrom baxter_run.py.
1. Create a new MIDCA object and add robot dorrspecific modules to it.

2. Create a RosMidca object. This object is responsible for sending messages to ROS as
requested by MIDCA, and for placing messages receivagdropriate queues for MIDCA

to process. At present, all topics which will be used for incoming or outgoing messages
must be specified at creation.

32

3. Pass in handleras arguments to the RosMidca construétorincoming and outgoing
messages. In this demoMIDCA wuses 3 incomingMsgHandlersand 1
outgoingMsgHandler

1 A FixedObjectLocationHandler receives information about tbeation of a single,
prespecified object
1 An UtternanceHandler receives utterances as Strings
1 A FeedbackHandleeceivedeedback regardintipe success or failure of requested
actions
1 An outgoingMsgHandlesends out String messages representing point commands

4. Call ros_connect() on the RosMidca object. Note that the ROS master nocda nearty
be started or this method Wfail.

5. Callrun_midca() on the RosMidca object. This will run MIDCA asynchronously. If certain
rate (phases/second) is desired, it can be input as the cycleRate argument of this method
(default 10)

What MIDCA does while running

1. Asynchronously to cyclia behavior, RosMidca's handlers listen for incagmmessages.
As they are received, handlers place them into appropriate queues in
a partition of MIDCA's memory that could be thought of as the subconscious,
or perhaps preconscious.

1 Note: if external pereption changes its output style or capabilities, the handlers
defined in rosrun.py are responsible for adjusting to process the new input.
Specifically, for each new input type or format, a new handler should be created.

2. In the perceive phase, MIDCAeads messages from all queues, processes #sem
necessary, adds a time stamp to indicate when each message was recestedeaitite
processed data in MIDCA's main memory. Note that only the perpbage accesses the
incoming message queues.

3. Inthe interpret phase, MIDCA checks to see if it has received any veslraictions. If it
gets the message 'point to the quad’, it will creatgytiaé Goal(objective = "showloc",
subject = "self", directObject = "quadihdirectObject = "observer"”). Crently it also
interprets the phrase "goodblgaxter" in the same way, simply because in testing it was
sometimes difficulfor the voice recognition software to understand "point to the quad".
Once agoal iscreated it will be stored in the goal graph this demo, since afjoals are
identical and identical goals are only stored once, there will feverultiplegoals in the
goal graph, though the same goal may be added afiammit is achieved and removed.

4. In the Evalatephase, MIDCA checks to see if its current plan is complete.isf, iit
declares the goal of that plan completed and remitneegoaland plan frommemory.

33

5.

In theIntend phase, MIDCA selects all goals of maximal priority fromgiba graph. In
this deno, there is never more than one goal, so MIDCA select that goal if it exists in
the graph.

In the planning phase, MIDCA checks to see if an old plan exists fauthent goal. If
not, it creates a high level plan by using the pyhop plarthentransforms it into an
actionable plan using a mapping between fayel actionsand methods to carry them out.

For example, the high level actipoint_to(object) is instantiated in a method which sends

out ROS messages the pointing effector node, thenpesatedly checks for feedback

indicating success ofailure. Once all actions in a plan are complete, the plan itself is

considered complete. If any action fails, the plan is considered failed.

In the Act phase, MIDCA attempts to load a plan forgahaent goal frommemory. Ifa
plan existsit follows this pattern:

currentAction = plan.firstAction
while currentAction != None:
if currentAction.complete:

currentAction =
plan.nextAction()
continue
else if currentA ction.not_started:

currentAction.start()
if currentAction.failed or
currentAction.isBlocking:
break

In other words, actionbegin successively until either one fails orbbocking action is
reached. Actions a@ssumed to be running asynchronodisdyn when theystartto when
they are declared completed.

8. Lowerlevel details of planning and action

1 Planning methods and operators for this demo are in the _planning/asynch
folder.

1 Low-level methods see the piat_to example in 6) are defined in
_planning/asynch/asynch.py

1 Each Asynch[ronous]Actigra lowlevel method defines anncomplete python

function and an executeFunc function, which are passed into the constructor as
arguments. These methods fully define the behavior aid¢hen. So, for example,

the do_point() AsynchAction's isComplete function checks MIDCA's memory for
feedback indicating the action's completion or failure, then updates its status
appropriately The execute function searches memory for the last known location
of the object given as an argument (from the Heytel plan), then creates a ROS
message contairgrthat location and a commandfior later feedbackand requests

that RosMidca broadcast the message.

34

1 This setup means that if external effectors change their input requirements,
MIDCA's high-level planning can stay the same, but the interface betlwedwo
defined in asynch.py must change. Specifically, a new AsynchAction must be
created for each new behavior type, though this process coalddreated to some
degree.

1 As an aside, the mirror of the last point with respect to percegatibar than etion
is also true. See the note after 1).

Cameracalibration.

We use the Baxterdé right hand camera to obser
where it is in the image. Then using camera calibration we find the location of the objket on
tableplaneThe ROS ser vi ce c al wasaeatédRa ragrieve théimagefrom a me r
Baxterd right hand camera that subscrThibied t o 1
where the images coming from camera are published. Uptingctiis service, it stores and

returns the last image published.

To get the coordinates of a pixel on the table plane from coordinates of the object in the image, we
performed a calibration task before running MIDCA. In this calibration, we markeddmis pn

the table and sample them moving the Baxterd |
effector of the left arm. Then we can visualize them in the image and the corresponding pixels by
clicking on those points on the image. With thgsents, we can calculate a matrix H that
represents a linear transform between points in the floor and points in the image, called a
homography. Using the inverse matrix H, given a pixel in the image we can calculate the
coordinate of an object in the talplane.

We use OpenCYV library to recognize an object by its color in the way filters color from a certain
range in HSV color space that corresponds to each color, transforming it in black and white image.
Let6bs say red i s t Htertochange evanytred pixeltoowhite. Then it findse st
the largest contour on the image which represents the object. Then the algorithm finds the center
of this contour as the selected pixel and using the inverse matrix H it finds the object position on
the table plane. For each defined HSV range, this algorithm finds the location of that colored object

on the table plane and adds it to a list. MIDCA will receive a list of objects that are visible in the
current scene, with the information on their colod &rcation.

To make this work, we used the Baxterdé right |
position based off the color of the objedhttp://www.nildo.me/organizer -
baxter/). We manually place the end effector of |

the table, this wawe can easily map the table. After this, we click oretkeect points on the image
given by the camera. So, we can make a cross reference between those points and compute the
homography matrix from the image to the table.

8.3. The Baxter and Gazebo

Gazebo is @& opensource robot simulatorwhose code is publicallyavailable at
http://gazebosim.org . The r@uirements to run the demo are as follows.

35

http://www.nildo.me/organizer-baxter/
http://www.nildo.me/organizer-baxter/
http://gazebosim.org/

1. UBUNTU 14.04 LTS
2. Python 2.7

The package includes a graphical uséerface, a programmable software interface, a physics
engine, andhigh-quality graphics rendering.

Installation Instructions.

1. Workstation Setup: Follow steps from 1 to 4 from the below.
2. SIMULATOR SETUP
Follow steps to instalGAZEBO from the reference linkSimulator Installation(ROS
Indigo version)
3. MIDCA
Follow instructionsn Section5.5to install MIDCA.
4. DEPENDENCIES
1 Pocket Sphinx

$ pip install -- upgrade pip setuptools wheel
$ pip install -- upgrade pocketsphinx

1 Robot State Publisher

$ sudo apt - get install ros -indigo -robot - state - publisher

Running Example Scripts

This is the demo on the gazebo simulator working with the simuBgeder robot on the
blocksworld domain. We use three blocks in this domain and perform operations like stack,
unstack, get and put.

1. Launch the Baxter Robot in the Gazebo SimuléeeFigurel18).

1 Open a new terminal windovergtrl + T)

$ cd ~/ros_ws (Go to the workspace directory)
$./baxter.sh sim
$ roslaunch baxter_gazebo baxt er_world.launch

36

http://sdk.rethinkrobotics.com/wiki/Simulator_Installation

Gazebo

File Edic View

g *+O 000 [%%Z @

Property Value

sim Time:

Figure 18. Baxter Robot in gazebo, after executing the roslaunch command

2. Get the modelftable and lmcks)into the simulator (seEigurel9).

1 Open a new terminal (cntrl + T)
1 Change currenticectory to the MIDCA Folder

$./baxter.sh sim
$cd examples/_gazebo_baxter
$ python model.py

Figure 19. Baxter Robot along with table and blocks in gazebo, after executing the second set of commands.

37

